首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   4篇
  国内免费   9篇
测绘学   3篇
大气科学   8篇
地球物理   46篇
地质学   68篇
海洋学   17篇
天文学   46篇
综合类   7篇
自然地理   11篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   8篇
  2011年   13篇
  2010年   13篇
  2009年   21篇
  2008年   11篇
  2007年   13篇
  2006年   10篇
  2005年   11篇
  2004年   7篇
  2003年   10篇
  2002年   8篇
  2001年   10篇
  2000年   5篇
  1999年   12篇
  1998年   6篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有206条查询结果,搜索用时 265 毫秒
91.
In this work, we continue revising the theoretical basis ofnumerical models describing the transport of matter andenergy inside a porous dust-ice mixture at low temperature. Amodel of a light-absorbing near-surface layer of a comet nucleus isinvestigated. Gas transport is considered simultaneously with thesolution of the general heat transfer equation. Thequasi-stationary temperature distribution and the H2O massflux and sublimation rate are computed for a nucleus model ofcomet 19P/Borrelly at the Deep Space 1 (DS1) encounter. Theenergy is deposited in a layer of about 20 particle radii: Thiscorresponds to a solid-state greenhouse effect. The surfacetemperature of the layer-absorbing model as well as the gasproduction rate are significantly smaller than the ones in thesurface-absorbing model. An active fraction of 40–50% would berequired to explain the observed water production rate ofP/Borrelly with our layer-absorption model at the time of the DS1encounter.  相似文献   
92.
Within a framework of 2D magnetohydrodynamic (MHD) simulations, we explore the dynamical regimes initiated by a supernova explosion in a magnetized stratified interstellar medium (ISM). We concentrate on the formation of large-scale magnetic structures and outflows connected with the Parker instability. For the sake of simplicity we only show models with a fixed explosion energy corresponding to a single supernova (SN) occurring in host galaxies with different fixed values of the gravitational acceleration g and different ratios of specific heats. We show that in general, depending on these two parameters, three different regimes are possible: a slowly growing Parker instability on time-scales much longer than the galactic rotation period for small g; the Parker instability growing at roughly the rotation period, which for ratios of specific heats larger than one is accompanied by an outflow resulting from the explosion for intermediate g; and a rapidly growing instability and a strong blow-out flow for large g . By means of numerical simulations and analytical estimates we show that the explosion energy and gravitational acceleration which separate the three regimes scale as Eg 2∼constant in the 2D case. We expect that in the 3D case this scaling law is Eg 3∼constant . Our simulations demonstrate furthermore that a single SN explosion can lead to the growth of multiple Parker loops in the disc and large-scale magnetic field loops in the halo, extending over 2–3 kpc horizontally and up to 3 kpc vertically above the mid-plane of the disc.  相似文献   
93.
The evolution of ground thermal state has been studied to assess impacts of current climatic warming on permafrost in Central Yakutia. The analysis of long-term data of regional weather stations has revealed one of the highest increasing trends in mean annual air temperature in northern Russia. A forecast of surface air temperature fluctuations has been made by applying a frequency analysis method. Monitoring of ground thermal conditions allows us to identify inter-annual and long-term variability among a wide range of natural conditions. Experimental research has indicated a long-term dynamics of ground thermal state evolution: ground temperatures at the depth of zero annual amplitude and seasonally thawed layer depth. Long-term variability of thaw depth shows near-zero to weak positive trends in small valleys in contrast to weak negative trends on slopes. With significant climatic warming, the thermal state of near-surface layers of permafrost demonstrates steadiness. Anthropogenic impacts on ground thermal regime in various terrain types have been qualitatively evaluated. Clear-cutting, ground cover stripping, and post-fire deforestation in inter-alas type terrains result in a significant increase of temperature and seasonal ground thaw depth, as well as adverse cryogenic processes. The dynamics of mean annual ground temperature in slash and burn sites have been evaluated in reference to stages of successive vegetation recovery.  相似文献   
94.
We report chemical compositions (major and trace components including light hydrocarbons), hydrogen, oxygen, helium and nitrogen isotope ratios of volcanic and geothermal fluids of Mutnovsky volcano, Kamchatka. Several aspects of the geochemistry of fluids are discussed: chemical equilibria, mixing of fluids from different sources, evaluation of the parent magmatic gas composition and contributions to magmatic vapors of fluids from different reservoirs of the Kamchatkan subduction zone. Among reactive species, hydrogen and carbon monoxide in volcanic vapors are chemically equilibrated at temperatures >300°C with the SO2-H2S redox-pair. A metastable equilibrium between saturated and unsaturated light hydrocarbons is attained at close to discharge temperatures. Methane is disequilibrated. Three different sources of fluids from three fumarolic fields in the Mutnovsky craters can be distinguished: (1) magmatic gas from a large convecting magma body discharging through Active Funnel, a young crater with the hottest fumaroles (up to 620°C) contributing ~80% to the total volcanic gas output; (2) volcanic fluid from a separate shallow magma body beneath the Bottom Field of the main crater (96–280°C fumaroles); and (3) hydrothermal fluid with a high relative and absolute concentrations of CH4 from the Upper Field in the main crater (96–285°C fumaroles). The composition of the parent magmatic gas is estimated using water isotopes and correlations between He and other components in the Active Funnel gases. The He-Ar-N2 systematics of volcanic and hydrothermal fluids of Mutnovsky are consistent with a large slab-derived sedimentary nitrogen input for the nitrogen inventory, and we calculate that only ~1% of the magmatic N2 has a mantle origin and <<1% is derived from the arc crust.  相似文献   
95.
Geothermal field Los Humeros, Mexico, is characterized by a high steam fraction in the well fluids, by extremely high B concentrations in separated water (grams per liter, with a magmatic B signature, δ11B ± 2σ = −0.8 ± 1.6‰), by the absence of correlation between B and Cl concentrations and by positive correlation between B content in separated water and fluid enthalpy. Such behavior is consistent with the existence of moderately acid brine (pH 3–5) at depth with a high B concentration (500–600 mg/kg). In this case a 3-level model can be suggested for Los Humeros: (1) immature, moderately acid brine at depth which is boiling at a temperature ∼350 °C producing the HCl-bearing vapor with a high B content; (2) partial condensation of this vapor at the upper level accompanying water–rock interaction and neutralization; (3) formation of a shallow water-dominated aquifer above a lithologic low-permeability boundary as has been proposed by other authors. A thermochemical computer code has been used to model boiling of an aqueous fluid at 350 °C with 0.1 M of NaCl, 0.05 M of H3BO3 and variable amount of HCl (0.001–0.1 M), then a partial condensation of the produced vapor at 250 °C and then separation of the steam–water mixture at 150 °C. Results of simulation are in a qualitative agreement with the observed data.  相似文献   
96.
Knowing the collisional process among small porous icy bodies in the outer solar system is a key to understanding the formation of EKBOs and the evolution of icy planetesimals. Impact experiments of sintered porous ice spheres with 40%, 50%, 60% and 70% porosity were conducted by using three types of projectiles at the impact velocity from 2.4 to 489 m/s, and we studied the effects of porosity on the collisional processes. Projectile sticking occurred at the impact velocity higher than 44 m/s for 60% porosity targets and higher than 13 m/s for 70% porosity targets. The antipodal velocity of the porous ice target increased with the increase of energy density, Q, and it increased slightly with the increase of porosity, although it was exceptionally high in cases when the projectile penetrated the target. The shattering strength of porous ice targets was found to decrease from 100 to 31 J/kg with the increase of porosity from 40% to 70%. The cumulative fragment mass distribution was found to depend on the energy density and the target porosity, and the slopes of the distribution in the small fragment region were almost flat for more porous targets. We reanalyzed the cumulative fragment mass distribution and first obtained the empirical equation showing the fragment mass distribution of porous ice targets as a function of the energy density and the porosity.  相似文献   
97.
In many wellbore stability analyses, the ability to forecast both the occurrence and extent of plastic deformation and failure hinges upon a fundamental understanding of deformation mode and failure mechanism in the reservoir rock. This study focuses on analyzing plastic zones, localized deformations, and failures around a borehole drilled overbalanced or underbalanced through a highly porous rock formation. Based on several laboratory experiments, porous rocks are prone to deform under both shear-induced dilation and shear-enhanced compaction mechanisms depending on the stress state. The shapes of the deformation and failure patterns around the borehole are shown, depending on the initial stress state and the local stress paths. The inquiry of the local stress paths in the near-wellbore zone facilitates the understanding of the reasons for different types of failure mechanisms, including the mixed-mode and the plastic deformation structures. The modification of the 2D plane strain condition by imitating third stress in the numerical scheme helps us bring the stress paths closer to the real state of loading conditions. Our modeling reveals that the transition from isotropic to anisotropic stress state is accompanied by an increase in the deviatoric part of effective shear tensor that leads to the development of inelastic deformation, degradation, and subsequent rock failure. Particular interest is devoted to the modeling of strain localization especially in compaction mode around a wellbore and computing the amount of stress concentration at the tips of dog-eared breakouts. Stress concentration can result in a change in irreversible deformation mode from dilatancy to compaction, elucidating the formation of the shear-enhanced compaction phenomenon at the failure tips in the direction of the minimum horizontal stress.  相似文献   
98.
Middle Miocene to Quaternary lavas on Kunashir Island in the southern zone of the Kurile Arc were examined for major, trace, and Sr–Nd–Pb isotope compositions. The lavas range from basalt through to rhyolite and the mafic lavas show typical oceanic island arc signatures without significant crustal or sub-continental lithosphere contamination. The lavas exhibit across-arc variation, with increasingly greater fluid-immobile incompatible element contents from the volcanic front to the rear-arc; this pattern, however, does not apply to some other incompatible elements such as B, Sb, and halogens. All Sr–Nd–Pb isotope compositions reflect a depleted source with Indian Ocean mantle domain characteristics. The Nd and Pb isotope ratios are radiogenic in the volcanic front, whereas Sr isotope ratios are less radiogenic. These Nd isotope ratios covary with incompatible element ratios such as Th/Nd and Nb/Zr, indicating involvement of a slab-derived sediment component by addition of melt or supercritical fluid capable of mobilizing these high field-strength elements and rare earth elements from the slab. Fluid mobile elements, such as Ba, are also elevated in all basalt suites, suggesting involvement of slab fluid derived from altered oceanic crust. The Kurile Arc lavas are thus affected both by slab sediment and altered basaltic crust components. This magma plumbing system has been continuously active from the Middle Miocene to the present.  相似文献   
99.
The tectonic environment of Kyushu, Japan is affected both by the subduction of the Philippine Sea plate and by the extensional tectonics related to rifting of Okinawa Trough at the eastern margin of the Eurasia Plate. We found that the Sendai fault zone acts as a channel for concurrent eruption of oceanic island basalt (OIB)-type and island arc (IA)-type basaltic rocks, propagating west to east in the Sendai region of southern Kyushu. The location of the Sendai fault zone is likely to correspond to the left-lateral shear zone in southern Kyushu as inferred by GPS Earth Observation Network. A similar magmatic association is present in the Beppu–Shimabara (BS) graben system in central Kyushu. The associate magmas of OIB-type rocks in Kyushu can be classified into typical, EM II-like and their intermediate OIB-type magmas in addition to MORB-like OIB-type magma in 87Sr/86Sr–Nb/Y systematics. Typical OIB-type and intermediate OIB-type magmas are erupted within the Sendai fault zone and BS graben system, respectively. The former is characterized by highest Nb/Y but low 87Sr/86Sr similar to MORB-like OIB-type magma erupted in northern Kyushu and the latter has intermediate Nb/Y and 87Sr/86Sr between typical and EM II-like OIB-type magmas. Almost all the IA-type rocks within the Sendai fault zone are generated from parental IA-type magma in Kyushu and characterized by weak crustal assimilation, having the lowest 87Sr/86Sr similar to typical OIB-type magma but the highest 143Nd/144Nd of arc magmas in Kyushu. The ages of both types of basaltic rocks within the Sendai fault zone range from 1.6 to <0.01?Ma clearly younger than those of andesitic rocks on northern and southern outsides of the fault zone and become younger from west to east. Initial formation of the fault zone has been induced by the counterclockwise rotation of southern Kyushu during the last 2?Ma as well as the BS graben system. Kyushu has continued to be split into three parts by the Sendai fault zone and BS graben during the Quaternary; northern, central, and southern zones. Their initial formation ages are likely to be linked to the initial rifting age of the middle Okinawa Trough back-arc basin.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号